Culture Orchid Doctor

by Robert M. [Bert] Hamilton (Compiler)

Originally published in The Orchid Doctor in 1980 and 1988

Posted by Sys Admin over 7 years ago.

Article Blog   Article Index
Transmission coefficients for materials; for a list of 34 materials and the degrees of heat loss; refer to OD71-192+ (See also Heating).
Share on Social Media:  
Log in to Add a Comment

More The Orchid Doctor Articles under the Heading Greenhouses

Greenhouses Comments
GREENHOUSE BLANKET: For Heat Conservation A sheet of plastic drawn horizontally just before sundown across the greenhouse about six feet above the ground to trap the warm air and reduce the cubic area requiring heat; to be withdrawn each sunrise. F82-156 0
GREENHOUSES: A Basic Law in Their Operation The taller the greenhouse the easier it is to operate. OD67-298 0
GREENHOUSES: Automatic By use of Envirorrdl designed for a fan heater of 2400 watts output at 10 amps, one evaporative cooler and a circulating fan; suitable for an area 12 ft. by 8 ft.; for details see AU87(l)-36 0
GREENHOUSES: Automation Electronic environmental control with modern technology without time clocks but with sensing and control devices and control equipment; refer to W9-115 0
GREENHOUSES: Best Construction Woods Redwood or cypress but the latter is hard to find; where wood contacts ground it should be soaked in copper napthanate preparation, which extends its usefulness by a few years. A72-807 0
GREENHOUSES: Cheap and Effective Construction details for a basic house sized 10ft by 8ft. by 8.25 ft. high; expandable type, refer to AU82-127 0
GREENHOUSES: Construction Design and details of a 32ft. long glass unit for an amateur's use incorporating below-ground floor, rain tanks, Insolshade bubble insulation, etc., refer to OR88-18;40For general culture in Canada, refer to A85-31; 1096 0
GREENHOUSES: Cool Growing Environment Design and construction of a unit for minimum night temperature of 50dF, a day minimum of 60dF and day maximum of 85dF; heaters, polyethylene lining, air movement, ventilation, dry area; for details oee OR87-51 0
GREENHOUSES: Coverings Heat loss per BTU per sq. ft. per hour at zero degrees F. is: glass -- 1.13; doubled glass -- 0.65; triple glass -- 0.47; PVC -- 0.92; Fiberglass -- 1.00; Acrylic (Plexiglass) -- 1.00; Acrylic doubled rigid -- 0.52; Polycarbonate doubled -- 0.62; Polyethylene film (2, 4, or 6 mil.) -- 1.15; Poly-film doubled -- 0.70; Mylar -- 1.05. Florists' rev. 1979 v.164-132 0
GREENHOUSES: Design and Construction Two-storey advanced design for intermediate to warm growing conditions as part of garage architecture; for details refer to A87-799 0
GREENHOUSES: Design Principles Nine major steps: checking the local building code; the design processes; drawings and more drawings; choosing the builders; reviewing every design idea and itemizing the problem points; analyzing decisions; project costs; and, final thoughts; refer to A87-729 0
GREENHOUSES: Electronic Controls Devices include a cool inlet fan, a hot air outlet fan, a fan heater, an overhead misting and watering nozzle system, an external roof-misting system, a silicon diode control and electronic thermometer, sensors, phototransistors, solenoid, humidistat, electronic clock, etc., for the technicians' delight.AU87(4)-15 0
GREENHOUSES: Energy Efficient Ten points emphasized for the Maryland area: the temperature below the earth frost line is 13 dC; solar energy is always available; a southern exposure is necessary; the sun's rays should strike the roof at 90 Deg. angle for Maryland; black absorbs heat; all side walls should be insulated; insulation on the outside of the foundation down to 46cm or more below line; a storage system is a necessity; temperature stability is important; utilizing a hillside; refer to Wll-115 0
GREENHOUSES: Epoxy Enamels as Paint on Wood Is used for boat bottoms, should do almost as well in greenhouses. A66-580 0
GREENHOUSES: Floors The ideal is a floor dug down to three feet, filled in with a foot of large stones and two feet of pebbles; concrete and dirt floors tend to lower humidity. OIg88Feb-3 0
GREENHOUSES: Foundations Constructed of Creosoted Railway Ties The creosote should be coated carefully with linseed oil; for added protection from the creosote fumes areas exposed on the inside should be covered with aluminum foil. A73-615 0
GREENHOUSES: Fumes -- Toxic Effect of Pesticide Smoke Their effects remain for about 12 hours; it is safe to enter 12 hours after using Plantfume #103. A78-403 0
GREENHOUSES: Glass Type Recommended A double-thick, regular, clear "B" quality glass is good. A64-975 0
GREENHOUSES: Heat Control Redistribution of the hot air in the apex of the house to the bench level is achieved by using the "Equal Heat" mechanism, for explanation refer to OR84-409 0
GREENHOUSES: Heat Loss Calculation A simple method: the heat loss in BTU's per hour is equal to the square feet of the glazed area X the temperature lift (raising greenhouse temperature above the average outside temperature) X 0.44 X 3.412; for a more sophisticated method refer to OD71-194 0
GREENHOUSES: In Canada Problems of light and temparatures as they affect culture and structures in special areas devised to provide optimum conditions, refer to Wll-347 0
GREENHOUSES: Indoor Urban Novelty Area size 20 by 30 ft. on the 12th floor of a New York City building; painting and sealing the apartment with epoxy paint and plastics, use of fiberglas, fertilizer proportioner, humidifier, four large 1000-watt sodium vapor bulb lamps, alternating warm and cool-white plus UHO fluorescent tubes, fans, pans to collect watering run-off and create humidity; an air-conditioner for summer; quite awesome. A83-1255 0
GREENHOUSES: Insulation Air-space Ideally, the space between outer and inner layers of a greenhouse cover should be approximately 1.5 inches thick, but spaces of three-quarters to eight inches are used; below three-quarters inch the effectiveness is rapidly lost. A64-548 0
GREENHOUSES: Maintenance and Safety Precautions Never work on the roof alone; never use white lead dissolved in gasoline for shading; never use gasoline when painting; cymbidium leaf-tips have inflicted many an eye-injury so wear protective goggles; break into two sides any double edged safety razor blades used for cutting flowers; do not store ammonium nitrate with fuel oil, etc. because contamination can produce an explosive; use protective goggles and a mask when spraying toxics. A72-328+ 0
GREENHOUSES: Most Efficient Use of Sun's Radiation The Ritelite planthouse; has its glass surfaces opposed to the surface of the atmosphere; are fixed in "normal" position in mid and higher latitudes to approximate tropic light values; refer to OA75-215+ 0
GREENHOUSES: Plans to Build A publication is usually available from your government college of agriculture which recommends plans. A72-412 0
GREENHOUSES: Plastic Lining for Insulation The most economical film is two-mil polyethylene which produces a slight shading effect. A65-52 0
GREENHOUSES: Plastic Linings for Insulation Still air is the best insulation, to achieve it use plastic linings of polyethylene about 2in. away from the inside of the roof; it is efficient; plastic bubbles material one inch size between two sheets of polyethene (as a sandwich) is most efficient. OR84-219 0
GREENHOUSES: Plastics and Their Characteristics Plastic greenhouses can be heated as satisfactorily as glass ones; crops are of equal quality; construction costs per square foot are about one-sixth; in some areas they are assessed as temporary structures and carry low or no tax rates. OD74-202 0
GREENHOUSES: Preferred Covering Glass allows for a maximum of light or of shading; next comes clear fiberglass; for a strong sun area opaline or a frosted fiberglass may be best. A72-1100 0
GREENHOUSES: Pressure-treated Lumber for Construction Avoid wood treated with creosote, pentachlorophenol or copper compounds; the non-toxic ones are fluorochrome, arsenate phenol, and chromated zinc chloride. A86-147 0
GREENHOUSES: Reflecting Light From North Wall Use bright aluminum foil and keep it algae-free; it probably exceeds reflection from a white painted wall. A65-53 0
GREENHOUSES: Roof of Corrugated Plastic Use one-sixteenth inch clear colorless plastic; the orientation of the corrugations is unimportant except to shed water and dirt most efficiently. A65-52 0
GREENHOUSES: Roof Slope Minimum Moisture can be made to run down rather than drip; 35% slope is probably the minimum and 40% is often used. A67-901 0
GREENHOUSES: Sanitation A program of cleaning, sweeping and disinfecting with bleach, Physan, Shield; a fungicide treatment of plants and greenhouse with Natriphene, Panogen or Tersan; refer to A66-375+Infestations of many pests originate on outside plants growing around, so the land should be cleared of growing things in the periphery. AH86-61Remove all decaying leaves; flowers and spilled compost from benches and floors; do not store potting media in the greenhouse; all organic materials favor fungal and bacterial growth. OD67-50 0
GREENHOUSES: Solar Design Types In Texas a 12ft. by 16 ft unit was partly submerged in the ground and is described with illustrations, diagrams, specifications and discussion of preferred ways and means; refer to A83-500 0
GREENHOUSES: Solar Lean-to Type In Massachusetts, a design with construction details for efficiency in operation; illustrations, plans; refer to A83-1031 0
GREENHOUSES: Solar Types A system incorporating a conservatory to trap efficiently solar energy, with reflectors to boost input through geometrically oriented windows; apertures and insulation methods; 70 genera housed; illus.; refer to A86-143 0
GREENHOUSES: Space Limitations Impose Changes Get rid of the poor plants in the collection; relocate the inanimate objects; use step benches for more pot space, use vertical space by means of mounted plants, for pot hangers, etc.; use floor space more effectively by filling in spaces along the benches and walls; create a mini-greenhouse adjaccent; example. A83-578 0
GREENHOUSES: Submerged A combined solar and sunken structure in Maryland has marry advantages; for complete details refer to A82-1141An "English" style, size 7 ft, by 9 by 5.5 deep; a huge success is the claim and economical to operate to boot; refer to A81-304; the same greenhouse added to. A81-562,, in Pennsylvania; another one in Texas: it saves energy,provides moderated temperatures. A81-385 0
GREENHOUSES: Sunlight and Automatic Control Use Saran roll screening arranged to raise or lower automatically depending on the amount of sunshine acting as a trigger on a thermostat; diagrams given; refer to A71-699+ 0
GREENHOUSES: Unheated in San Francisco Growth and flowering may be delayed at a night temperature of about 50 dF (lO dC); if the temperature was lower the plants should be given some warmth or moved to a warmer area at critical times. A84-1061 0
GREENHOUSES: Warm Growing A discussion of location, size, shape, energy conservation, air movement, heating, automation, in New Zealand, refer to NZ86-82 0
GREENHOUSES: Weed Control on Gravel Floor Weeds growing from the soil under the gravel can be sprayed with Simazine 80W, or with Telvar, or with ordinary borax. A70-427; A71-609 0
GREENHOUSES: Western Red Cedar Construction For data on design, construction pointers, etc. refer to OR87-14 (England) 0
GREENHOUSES: Winterizing The heaters, whether electric, kerosene or gas, or oil should be checked; the structure should be examined for leaks; a double layer of plastic insulation should be installed for winter only, a heat conservation blanket should be installed, water should be checked and the air circulation proved out. F82-157 0
GREENHOUSES: Wood Treatment for Construction Creosote or pentachlorophenol should not be utilized due to their toxic fume release for years after; avoid copper compounds which are also toxic to orchids; use fluorchrome, arsenate of phenol, or, chroma ted zinc chloride. A86-147 0

New Topics

  1. Mark Farran asked question How to open and read articles listed in category General Discussion
  2. Juliann Eckhard started topic Cattleya little susie in category Cattleya Alliance
  3. Shannon Gardea asked question NELLY ISLER in category General Discussion
  4. John Urey asked question Blooming Stenglottis Venus “jamboree “ in category General Discussion
  5. Claudia Young asked question RO system in category General Discussion

New Comments

  1. Daniel Heines commented on orchid Colm. Eric Gabriel Heines
  2. Carol Holdren commented on topic "Cattleya little susie" by Juliann Eckhard
  3. Carol Holdren commented on member plant Bc. Morning Glory by Chris Siolo
  4. R .Benson commented on member plant Kir. New Hybrid (Fred Clarke) SVO9831 by R .Benson
  5. Carol Holdren commented on topic "Blooming Stenglottis Venus “jamboree “" by John Urey
  6. Jeanne Uzar Hudson commented on member plant Lc. Canhamiana var. coerulea 'Cobalt' by Jeanne Uzar Hudson
  7. Jeanne Uzar Hudson commented on member plant Sns. gemmata by Jeanne Uzar Hudson
  8. Stefan Neher commented on topic "Orchid roots .com site?" by Mary Lane
  9. Kevin Barry commented on member plant Bul. Tammie Sue Pernas by Tony Pernas
  10. Linda Hartman commented on member plant Ctt. Final Blue by Linda Hartman
  11. Kevin Bergeson commented on member plant Paph. rothschildianum by Kevin Bergeson
  12. Carol Holdren commented on topic "recently purchased orchid shows unstoppable roots " by David George
  13. Michael Makio commented on orchid V. Beatrice Makio
  14. Carol Holdren commented on topic "shorter stem with less vigorous blooms" by katherine mott
  15. Carol Holdren commented on topic "need info on yellow bird" by Glenda Ratliff
  16. Carol Holdren commented on topic "Looking to join an orchid club." by Paula Milano
  17. Jeanne Uzar Hudson commented on topic "Repotting Large Cattleyas" by Jeanne Uzar Hudson
  18. Jeanne Uzar Hudson commented on member plant Paph. malipoense by Jeanne Uzar Hudson
  19. William Gorski commented on topic "how difficult is it growing from seed" by kevan gregory
  20. Carol Holdren commented on topic "Information " by Carmen Britton